Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities – Nature.com

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Nature Food (2021)
Metrics details
Environmental implications of food choice are the focus of increasingly extensive research, but less is known about the impacts of dietary patterns of different socio-economic groups of a country, and the trade-offs between nutritional quality and environmental impacts of diet within those groups. We evaluate the impacts of US household dietary patterns on greenhouse gas emissions, blue water footprint, land use and energy consumption across supply chains using an environmentally extended input–output analysis. We compare the nutritional quality of these dietary patterns using healthy eating index scores across individuals’ income and other socio-economic characteristics. Individuals with higher income or education levels are more likely to adopt healthier diets but are also responsible for larger environmental impacts of diet primarily due to a higher consumption of dairy and livestock products, seafood and items with lower energy density but higher nutrient density. Our optimization shows that a healthy diet with lower environmental impacts is achievable within current food budgets for almost 95% of people, and results in average decreases of 2% in food-related greenhouse gas emissions, 24% in land use and 4% in energy consumption, but a 28% increase in blue water consumption. However, such dietary patterns are unaffordable for 38% of Black and Hispanic individuals in the lowest income and education groups. Policies that affect income and food prices making nutritious food more affordable would be needed to achieve better nutrition and improved environmental outcomes simultaneously, particularly for more vulnerable socio-economic groups.
Subscribe to Journal
Get full journal access for 1 year
99,00 €
only 8,25 € per issue
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
All the data used in this study are publicly available except the 2015 US input–output table, which can be purchased from IMPLAN and is available upon request due to the data use agreement. The NHANES data can be retrieved from https://www.cdc.gov/nchs/nhanes/index.htm. The Center for Nutrition Policy and Promotion food prices database is available at https://www.fns.usda.gov/resource/cnpp-data. The distribution of cost comes from https://www.bea.gov/industry/industry-underlying-estimates. The FNDDS and FPED databases are available at https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/. Source data are provided with this paper.
The NHANES data were processed using R studio (based on R v3.6.1) and Stata v14.0. The input–output analysis was conducted in MATLAB v2018a. The statistical analysis and the LMDI decomposition were completed in Stata v14.0. The optimization was carried out in MATLAB v2018a. The figures were produced in R studio (based on R v3.6.1). All code is available upon request.
Nesheim, M. C., Oria, M. & Yih, P. T. (eds) A Framework for Assessing Effects of the Food System (National Academies Press, 2015).
Ranganathan, J. et al. Shifting Diets for a Sustainable Food Future (World Resources Institute, 2016).
Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).
ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).
ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
Auestad, N. & Fulgoni, V. L. What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics. Adv. Nutr. 6, 19–36 (2015).
CAS  PubMed  PubMed Central  Article  Google Scholar 
Popkin, B. M., Adair, L. S. & Ng, S. W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3–21 (2012).
PubMed  Article  PubMed Central  Google Scholar 
Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
PubMed  Article  PubMed Central  Google Scholar 
Dekker, L. H. et al. Socio-economic status and ethnicity are independently associated with dietary patterns: the HELIUS-Dietary Patterns study. Food Nutr. Res. 59, 26317 (2015).
PubMed  Article  PubMed Central  Google Scholar 
Darmon, N. & Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 87, 1107–1117 (2008).
CAS  PubMed  Article  PubMed Central  Google Scholar 
Rehm, C. D., Peñalvo, J. L., Afshin, A. & Mozaffarian, D. Dietary intake among US adults, 1999–2012. JAMA 315, 2542–2553 (2016).
CAS  PubMed  PubMed Central  Article  Google Scholar 
Wang, D. D. et al. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Inter. Med. 174, 1587–1595 (2014).
Article  Google Scholar 
White, R. R. & Hall, M. B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl Acad. Sci. 114, E10301–E10308 (2017).
CAS  PubMed  PubMed Central  Article  Google Scholar 
Hallström, E., Gee, Q., Scarborough, P. & Cleveland, D. A. A healthier US diet could reduce greenhouse gas emissions from both the food and health care systems. Clim. Change 142, 199–212 (2017).
ADS  Article  Google Scholar 
Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).
ADS  PubMed  PubMed Central  Article  Google Scholar 
Tom, M. S., Fischbeck, P. S. & Hendrickson, C. T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 36, 92–103 (2016).
Article  Google Scholar 
Rehkamp, S. & Canning, P. Measuring embodied blue water in American diets: an EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018).
Article  Google Scholar 
Perignon, M., Vieux, F., Soler, L. G., Masset, G. & Darmon, N. Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 75, 2–17 (2017).
PubMed  Article  PubMed Central  Google Scholar 
Guenther, P. M. et al. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. https://doi.org/10.1016/j.jand.2012.12.016 (2013).
Dietary Guidelines Advisory Committee. Dietary Guidelines for Americans 2015–2020 (Government Printing Office, 2016).
Liang, S. et al. Socioeconomic drivers of greenhouse gas emissions in the United States. Environ. Sci. Technol. 50, 7535–7545 (2016).
ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 23, 1178–1186 (2013).
Article  Google Scholar 
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
Wu, X. D., Guo, J. L., Meng, J. & Chen, G. Q. Energy use by globalized economy: total-consumption-based perspective via multi-region input–output accounting. Sci. Total Environ. 662, 65–76 (2019).
ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
Heller, M. C. & Keoleian, G. A. Greenhouse gas emission estimates of US dietary choices and food loss. J. Ind. Ecol. 19, 391–401 (2015).
CAS  Article  Google Scholar 
Willits-Smith, A., Aranda, R., Heller, M. C. & Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. Lancet Planet. Health 4, e98–e106 (2020).
PubMed  PubMed Central  Article  Google Scholar 
Behrens, P. et al. Evaluating the environmental impacts of dietary recommendations. Proc. Natl Acad. Sci. USA 114, 13412–13417 (2017).
ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
Hitaj, C., Rehkamp, S., Canning, P. & Peters, C. J. Greenhouse gas emissions in the United States food system: current and healthy diet scenarios. Environ. Sci. Technol. 53, 5493–5503 (2019).
ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
Kim, D., Parajuli, R. & Thoma, G. J. Life cycle assessment of dietary patterns in the United States: a full food supply chain perspective. Sustainability 12, 1586 (2020).
CAS  Article  Google Scholar 
Birney, C. I., Franklin, K. F., Davidson, F. T. & Webber, M. E. An assessment of individual foodprints attributed to diets and food waste in the United States. Environ. Res. Lett. 12, 105008 (2017).
ADS  Article  Google Scholar 
Rose, D., Heller, M. C., Willits-Smith, A. M. & Meyer, R. J. Carbon footprint of self-selected US diets: nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr. 109, 526–534 (2019).
PubMed  PubMed Central  Article  Google Scholar 
Darmon, N. & Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr. Rev. 73, 643–660 (2015).
PubMed  PubMed Central  Article  Google Scholar 
McNaughton, S. A., Ball, K., Crawford, D. & Mishra, G. D. An index of diet and eating patterns is a valid measure of diet quality in an Australian population. J. Nutr. 138, 86–93 (2008).
CAS  PubMed  Article  PubMed Central  Google Scholar 
Malon, A. et al. Compliance with French nutrition and health program recommendations is strongly associated with socioeconomic characteristics in the general adult population. J. Am. Diet. Assoc. 110, 848–856 (2010).
PubMed  Article  PubMed Central  Google Scholar 
Lallukka, T., Laaksonen, M., Rahkonen, O., Roos, E. & Lahelma, E. Multiple socio-economic circumstances and healthy food habits. Eur. J. Clin. Nutr. 61, 701 (2007).
CAS  PubMed  Article  Google Scholar 
Northstone, K. & Emmett, P. Dietary patterns of men in ALSPAC: associations with socio-demographic and lifestyle characteristics, nutrient intake and comparison with women’s dietary patterns. Eur. J. Clin. Nutr. 64, 978–986 (2010).
CAS  PubMed  Article  PubMed Central  Google Scholar 
Harrington, J. et al. Sociodemographic, health and lifestyle predictors of poor diets. Public Health Nutr. 14, 2166–2175 (2011).
PubMed  Article  Google Scholar 
Hulshof, K., Brussaard, J., Kruizinga, A., Telman, J. & Löwik, M. Socio-economic status, dietary intake and 10 y trends: the Dutch National Food Consumption Survey. Eur. J. Clin. Nutr. 57, 128 (2003).
CAS  PubMed  Article  PubMed Central  Google Scholar 
Rao, N. D. et al. Healthy, affordable and climate-friendly diets in India. Global Environ. Change 49, 154–165 (2018).
Article  Google Scholar 
Fisberg, R. M. et al. Dietary quality and associated factors among adults living in the state of São Paulo, Brazil. J. Am. Diet. Assoc. 106, 2067–2072 (2006).
PubMed  Article  PubMed Central  Google Scholar 
He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1, 122–127 (2018).
Article  Google Scholar 
Allcott, H. et al. Food deserts and the causes of nutritional inequality. Q. J. Econ. 134, 1793–1844 (2019).
MATH  Article  Google Scholar 
Hirvonen, K., Bai, Y., Headey, D. & Masters, W. A. Affordability of the EAT–Lancet reference diet: a global analysis. Lancet Glob. Health 8, e59–e66 (2020).
PubMed  Article  PubMed Central  Google Scholar 
Darmon, N., Lacroix, A., Muller, L. & Ruffieux, B. Food price policies improve diet quality while increasing socioeconomic inequalities in nutrition. Int. J. Behav. Nutr. Phys. Act. 11, 66 (2014).
PubMed  PubMed Central  Article  Google Scholar 
Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet 393, 791–846 (2019).
PubMed  Article  PubMed Central  Google Scholar 
Johnson, D. S., Smeeding, T. M. & Torrey, B. B. Economic inequality through the prisms of income and consumption. Monthly Lab. Rev. 128, 11–24 (2005).
Google Scholar 
America’s Shrinking Middle Class: a Close Look at Changes within Metropolitan Areas (Pew Research Center, 2016).
Miller, R. E. & Blair, P. D. Input–Output Analysis: Foundations and Extensions (Cambridge Univ. Press, 2009).
Ang, B. W., Zhang, F. & Choi, K.-H. Factorizing changes in energy and environmental indicators through decomposition. Energy 23, 489–495 (1998).
Article  Google Scholar 
Ang, B. W. LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233–238 (2015).
Article  Google Scholar 
Bowman, S., Clemens, J., Friday, J., Thoerig, R. & Moshfegh, A. Food Patterns Equivalents Database 2011–12: Methodology and User Guide (USDA, 2014).
Trumbo, P., Schlicker, S., Yates, A. A. & Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 102, 1621–1630 (2002).
PubMed  Article  PubMed Central  Google Scholar 
Macdiarmid, J. & Blundell, J. Assessing dietary intake: who, what and why of under-reporting. Nutr. Res. Rev. 11, 231–253 (1998).
CAS  PubMed  Article  PubMed Central  Google Scholar 
Dodd, K. W. et al. Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J. Am. Diet. Assoc. 106, 1640–1650 (2006).
PubMed  Article  PubMed Central  Google Scholar 
Zhang, S. et al. A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Ann. Appl. Stat. 5, 1456–1487 (2011).
MathSciNet  PubMed  PubMed Central  MATH  Google Scholar 
Tooze, J. A. et al. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat. Med. 29, 2857–2868 (2010).
MathSciNet  PubMed  Article  PubMed Central  Google Scholar 
Freedman, L. S., Guenther, P. M., Krebs-Smith, S. M., Dodd, K. W. & Midthune, D. A population’s distribution of Healthy Eating Index-2005 component scores can be estimated when more than one 24-hour recall is available. J. Nutr. 140, 1529–1534 (2010).
CAS  PubMed  PubMed Central  Article  Google Scholar 
Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).
ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
Rodrigues, J. F. D., Moran, D., Wood, R. & Behrens, P. Uncertainty of consumption-based carbon accounts. Environ. Sci. Technol. 52, 7577–7586 (2018).
ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
Lenzen, M., Wood, R. & Wiedmann, T. Uncertainty analysis for multi-region input–output models—a case study of the UK’s carbon footprint. Econ. Syst. Res. 22, 43–63 (2010).
Article  Google Scholar 
Download references
This work was supported by the National Natural Science Foundation of China under a Young Scholar Program Grant (71904098) and the China Postdoctoral Science Foundation under a Chinese Postdoc Scientific Grant (2019M650704).
Department of Earth System Science, Tsinghua University, Beijing, China
Pan He
School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
Pan He
Department of Geographical Science, University of Maryland, College Park, MD, USA
Kuishuang Feng, Giovanni Baiocchi & Laixiang Sun
School of Finance & Management, SOAS University of London, London, UK
Laixiang Sun
Integrated Research on Energy, Environment and Society (IREES), University of Groningen, Groningen, the Netherlands
Klaus Hubacek
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
P.H., K.F. and G.B. designed the study. P.H. prepared the data and led the analysis. P.H. and G.B. drew the figures. All authors participated in discussing the results and contributed to writing the manuscript.
Correspondence to Pan He or Kuishuang Feng or Giovanni Baiocchi.
The authors declare no competing interests.
Peer review information Nature Food thanks Gregory Miller, Laura Pereira and Donald Rose for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary methods and data description, Figs. 1–11 and Tables 1–19.
Statistical source data for Supplementary Figs. 2–11.
Statistical source data.
Statistical source data.
Statistical source data.
Statistical source data.
Statistical source data.
Statistical source data.
Reprints and Permissions
He, P., Feng, K., Baiocchi, G. et al. Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities. Nat Food (2021). https://doi.org/10.1038/s43016-021-00350-5
Download citation
Received: 21 January 2020
Accepted: 22 July 2021
Published: 30 August 2021
DOI: https://doi.org/10.1038/s43016-021-00350-5

Advertisement
Advanced search
Nature Food (Nat Food) ISSN 2662-1355 (online)
© 2021 Springer Nature Limited
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

source

Leave a Comment

Your email address will not be published. Required fields are marked *